Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
ACS Cent Sci ; 9(4): 602-613, 2023 Apr 26.
Article in English | MEDLINE | ID: covidwho-2309160

ABSTRACT

As the world struggles with the ongoing COVID-19 pandemic, unprecedented obstacles have continuously been traversed as new SARS-CoV-2 variants continually emerge. Infectious disease outbreaks are unavoidable, but the knowledge gained from the successes and failures will help create a robust health management system to deal with such pandemics. Previously, scientists required years to develop diagnostics, therapeutics, or vaccines; however, we have seen that, with the rapid deployment of high-throughput technologies and unprecedented scientific collaboration worldwide, breakthrough discoveries can be accelerated and insights broadened. Computational protein design (CPD) is a game-changing new technology that has provided alternative therapeutic strategies for pandemic management. In addition to the development of peptide-based inhibitors, miniprotein binders, decoys, biosensors, nanobodies, and monoclonal antibodies, CPD has also been used to redesign native SARS-CoV-2 proteins and human ACE2 receptors. We discuss how novel CPD strategies have been exploited to develop rationally designed and robust COVID-19 treatment strategies.

2.
Brief Funct Genomics ; 2022 Jul 18.
Article in English | MEDLINE | ID: covidwho-2301388

ABSTRACT

Most pathogens mutate and evolve over time to escape immune and drug pressure. To achieve this, they alter specific hotspot residues in their intracellular proteins to render the targeted drug(s) ineffective and develop resistance. Such hotspot residues may be located as a cluster or uniformly as a signature of adaptation in a protein. Identifying the hotspots and signatures is extremely important to comprehensively understand the disease pathogenesis and rapidly develop next-generation therapeutics. As experimental methods are time-consuming and often cumbersome, there is a need to develop efficient computational protocols and adequately utilize them. To address this issue, we present a unique computational protein design protocol that identifies hotspot residues, resistance mutations and signatures of adaptation in a pathogen's protein against a bound drug. Using the protocol, the binding affinity between the designed mutants and drug is computed quickly, which offers predictions for comparison with biophysical experiments. The applicability and accuracy of the protocol are shown using case studies of a few protein-drug complexes. As a validation, resistance mutations in severe acute respiratory syndrome coronavirus 2 main protease (Mpro) against narlaprevir (an inhibitor of hepatitis C NS3/4A serine protease) are identified. Notably, a detailed methodology and description of the working principles of the protocol are presented. In conclusion, our protocol will assist in providing a first-hand explanation of adaptation, hotspot-residue variations and surveillance of evolving resistance mutations in a pathogenic protein.

3.
Int J Biol Macromol ; 218: 225-242, 2022 Oct 01.
Article in English | MEDLINE | ID: covidwho-2257340

ABSTRACT

Antibodies play a crucial role in the defense mechanism countering pathogens or foreign antigens in eukaryotes. Its potential as an analytical and diagnostic tool has been exploited for over a century. It forms immunocomplexes with a specific antigen, which is the basis of immunoassays and aids in developing potent biosensors. Antibody-based sensors allow for the quick and accurate detection of various analytes. Though classical antibodies have prolonged been used as bioreceptors in biosensors fabrication due to their increased fragility, they have been engineered into more stable fragments with increased exposure of their antigen-binding sites in the recent era. In biosensing, the formats constructed by antibody engineering can enhance the signal since the resistance offered by a conventional antibody is much more than these fragments. Hence, signal amplification can be observed when antibody fragments are utilized as bioreceptors instead of full-length antibodies. We present the first systematic review on engineered antibodies as bioreceptors with the description of their engineering methods. The detection of various target analytes, including small molecules, macromolecules, and cells using antibody-based biosensors, has been discussed. A comparison of the classical polyclonal, monoclonal, and engineered antibodies as bioreceptors to construct highly accurate, sensitive, and specific sensors is also discussed.


Subject(s)
Biosensing Techniques , Antibodies , Antigens , Bioengineering , Biosensing Techniques/methods
5.
Biochem Biophys Res Commun ; 629: 54-60, 2022 11 12.
Article in English | MEDLINE | ID: covidwho-2007463

ABSTRACT

Shortly after the onset of the COVID-19 pandemic, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has acquired numerous variations in its intracellular proteins to adapt quickly, become more infectious, and ultimately develop drug resistance by mutating certain hotspot residues. To keep the emerging variants at bay, including Omicron and subvariants, FDA has approved the antiviral nirmatrelvir for mild-to-moderate and high-risk COVID-19 cases. Like other viruses, SARS-CoV-2 could acquire mutations in its main protease (Mpro) to adapt and develop resistance against nirmatrelvir. Employing a unique high-throughput protein design technique, the hotspot residues, and signatures of adaptation of Mpro having the highest probability of mutating and rendering nirmatrelvir ineffective were identified. Our results show that ∼40% of the designed mutations in Mpro already exist in the globally circulating SARS-CoV-2 lineages and several predicted mutations. Moreover, several high-frequency, designed mutations were found to be in corroboration with the experimentally reported nirmatrelvir-resistant mutants and are naturally occurring. Our work on the targeted design of the nirmatrelvir-binding site offers a comprehensive picture of potential hotspot sites and resistance mutations in Mpro and is thus crucial in comprehending viral adaptation, robust antiviral design, and surveillance of evolving Mpro variations.


Subject(s)
COVID-19 , SARS-CoV-2 , Antiviral Agents/chemistry , Binding Sites , COVID-19/genetics , Coronavirus 3C Proteases , Cysteine Endopeptidases/metabolism , Genome, Viral , Humans , Mutation , Pandemics , Protease Inhibitors/chemistry , SARS-CoV-2/genetics , Viral Nonstructural Proteins/chemistry
6.
Phys Chem Chem Phys ; 24(16): 9141-9145, 2022 Apr 20.
Article in English | MEDLINE | ID: covidwho-1784055

ABSTRACT

Dimerization of SARS-CoV-2 main protease (Mpro) is a prerequisite for its processing activity. With >2000 mutations already reported in Mpro, SARS-CoV-2 may accumulate mutations in the Mpro dimeric interface to stabilize it further. We employed high-throughput protein design strategies to design the symmetrical dimeric interface of Mpro (300 000 designs) to identify mutational hotspots that render the Mpro more stable. We found that ∼22% of designed mutations that yield stable Mpro dimers already exist in SARS-CoV-2 genomes and are currently circulating. Our multi-parametric analyses highlight potential Mpro mutations that SARS-CoV-2 may develop, providing a foundation for assessing viral adaptation and mutational surveillance.


Subject(s)
Coronavirus 3C Proteases , Protein Engineering , SARS-CoV-2 , COVID-19 , Coronavirus 3C Proteases/genetics , Dimerization , Humans , SARS-CoV-2/enzymology , SARS-CoV-2/genetics
7.
FEBS Lett ; 595(18): 2366-2382, 2021 09.
Article in English | MEDLINE | ID: covidwho-1363633

ABSTRACT

Favipiravir is a broad-spectrum inhibitor of viral RNA-dependent RNA polymerase (RdRp) currently being used to manage COVID-19. Accumulation of mutations in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RdRp may facilitate antigenic drift, generating favipiravir resistance. Focussing on the chain-termination mechanism utilized by favipiravir, we used high-throughput interface-based protein design to generate > 100 000 designs of the favipiravir-binding site of RdRp and identify mutational hotspots. We identified several single-point mutants and designs having a sequence identity of 97%-98% with wild-type RdRp, suggesting that SARS-CoV-2 can develop favipiravir resistance with few mutations. Out of 134 mutations documented in the CoV-GLUE database, 63 specific mutations were already predicted as resistant in our calculations, thus attaining ˜ 47% correlation with the sequencing data. These findings improve our understanding of the potential signatures of adaptation in SARS-CoV-2 against favipiravir.


Subject(s)
Amides/pharmacology , Antiviral Agents/pharmacology , Pyrazines/pharmacology , RNA, Viral/genetics , RNA-Dependent RNA Polymerase/genetics , SARS-CoV-2/drug effects , SARS-CoV-2/genetics , Drug Resistance, Viral/genetics , Mutation/genetics , Point Mutation/genetics
8.
J Phys Chem B ; 125(32): 9078-9091, 2021 08 19.
Article in English | MEDLINE | ID: covidwho-1328833

ABSTRACT

The COVID-19 pandemic has emerged as a global medico-socio-economic disaster. Given the lack of effective therapeutics against SARS-CoV-2, scientists are racing to disseminate suggestions for rapidly deployable therapeutic options, including drug repurposing and repositioning strategies. Molecular dynamics (MD) simulations have provided the opportunity to make rational scientific breakthroughs in a time of crisis. Advancements in these technologies in recent years have become an indispensable tool for scientists studying protein structure, function, dynamics, interactions, and drug discovery. Integrating the structural data obtained from high-resolution methods with MD simulations has helped in comprehending the process of infection and pathogenesis, as well as the SARS-CoV-2 maturation in host cells, in a short duration of time. It has also guided us to identify and prioritize drug targets and new chemical entities, and to repurpose drugs. Here, we discuss how MD simulation has been explored by the scientific community to accelerate and guide translational research on SARS-CoV-2 in the past year. We have also considered future research directions for researchers, where MD simulations can help fill the existing gaps in COVID-19 research.


Subject(s)
COVID-19 , Molecular Dynamics Simulation , Humans , Molecular Docking Simulation , Pandemics , SARS-CoV-2
9.
Biochem Biophys Res Commun ; 555: 147-153, 2021 05 28.
Article in English | MEDLINE | ID: covidwho-1157143

ABSTRACT

Several existing drugs are currently being tested worldwide to treat COVID-19 patients. Recent data indicate that SARS-CoV-2 is rapidly evolving into more transmissible variants. It is therefore highly possible that SARS-CoV-2 can accumulate adaptive mutations modulating drug susceptibility and hampering viral antigenicity. Thus, it is vital to predict potential non-synonymous mutation sites and predict the evolution of protein structural modifications leading to drug tolerance. As two FDA-approved anti-hepatitis C virus (HCV) drugs, boceprevir, and telaprevir, have been shown to effectively inhibit SARS-CoV-2 by targeting the main protease (Mpro), here we used a high-throughput interface-based protein design strategy to identify mutational hotspots and potential signatures of adaptation in these drug binding sites of Mpro. Several mutants exhibited reduced binding affinity to these drugs, out of which hotspot residues having a strong tendency to undergo positive selection were identified. The data further indicated that these anti-HCV drugs have larger footprints in the mutational landscape of Mpro and hence encompass the highest potential for positive selection and adaptation. These findings are crucial in understanding the potential structural modifications in the drug binding sites of Mpro and thus its signatures of adaptation. Furthermore, the data could provide systemic strategies for robust antiviral design and discovery against COVID-19 in the future.


Subject(s)
Adaptation, Physiological/genetics , Antiviral Agents/chemistry , Coronavirus 3C Proteases/chemistry , Drug Design , Drug Resistance, Viral/genetics , Mutation , SARS-CoV-2/enzymology , SARS-CoV-2/genetics , Amino Acid Sequence , Antiviral Agents/pharmacology , Binding Sites/drug effects , Binding Sites/genetics , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/genetics , Coronavirus 3C Proteases/metabolism , Genetic Fitness/genetics , Hepacivirus/drug effects , Hepacivirus/enzymology , Ligands , Models, Molecular , Oligopeptides/chemistry , Oligopeptides/pharmacology , Proline/analogs & derivatives , Proline/chemistry , Proline/pharmacology , Reproducibility of Results , SARS-CoV-2/drug effects , Selection, Genetic/genetics , Structure-Activity Relationship , COVID-19 Drug Treatment
10.
Acta Trop ; 214: 105778, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-1064688

ABSTRACT

We are living through an unprecedented crisis with the rapid spread of the new coronavirus disease (COVID-19) worldwide within a short time. The timely availability of thousands of SARS-CoV-2 genomes has enabled the scientific community to study the origin, structures, and pathogenesis of the virus. The pandemic has spurred research publication and resulted in an unprecedented number of therapeutic proposals. Because the development of new drugs is time consuming, several strategies, including drug repurposing and repositioning, are being tested to treat patients with COVID-19. Researchers have developed several potential vaccine candidates that have shown promise in phase II and III trials. As of 12 November 2020, 164 candidate vaccines are in preclinical evaluation, and 48 vaccines are in clinical evaluation, of which four have cleared phase III trials (Pfizer/BioNTech's BNT162b2, Moderna's mRNA-1273, University of Oxford & AstraZeneca's AZD1222, and Gamaleya's Sputnik V vaccine). Despite the acquisition of a vast body of scientific information, treatment depends only on the clinical management of the disease through supportive care. At the pandemic's 1-year mark, we summarize current information on SARS-CoV-2 origin and biology, and advances in the development of therapeutics. The updated information presented here provides a comprehensive report on the scientific progress made in the past year in understanding of SARS-CoV-2 biology and therapeutics.


Subject(s)
COVID-19/therapy , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/therapeutic use , Alanine/analogs & derivatives , Alanine/therapeutic use , Amides/therapeutic use , Animals , Antiviral Agents/therapeutic use , COVID-19/immunology , COVID-19/transmission , COVID-19 Vaccines , Chloroquine/therapeutic use , Clinical Trials as Topic , Coronavirus/genetics , Coronavirus Infections/transmission , Drug Combinations , Drug Repositioning , Glucocorticoids/therapeutic use , Humans , Hydroxychloroquine/therapeutic use , Indoles/therapeutic use , Ivermectin/therapeutic use , Lopinavir/therapeutic use , Mutation , Pandemics , Phytotherapy , Plant Extracts/therapeutic use , Pyrazines/therapeutic use , Ritonavir/therapeutic use , SARS-CoV-2/genetics , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus , Tinospora , Viral Zoonoses
11.
Eur J Pharmacol ; 894: 173836, 2021 Mar 05.
Article in English | MEDLINE | ID: covidwho-1002500

ABSTRACT

The COVID-19 pandemic has spread rapidly and poses an unprecedented threat to the global economy and human health. Broad-spectrum antivirals are currently being administered to treat severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). China's prevention and treatment guidelines suggest the use of an anti-influenza drug, arbidol, for the clinical treatment of COVID-19. Reports indicate that arbidol could neutralize SARS-CoV-2. Monotherapy with arbidol is superior to lopinavir-ritonavir or favipiravir for treating COVID-19. In SARS-CoV-2 infection, arbidol acts by interfering with viral binding to host cells. However, the detailed mechanism by which arbidol induces the inhibition of SARS-CoV-2 is not known. Here, we present atomistic insights into the mechanism underlying membrane fusion inhibition of SARS-CoV-2 by arbidol. Molecular dynamics (MD) simulation-based analyses demonstrate that arbidol binds and stabilizes at the receptor-binding domain (RBD)/ACE2 interface with a high affinity. It forms stronger intermolecular interactions with the RBD than ACE2. Analyses of the detailed decomposition of energy components and binding affinities revealed a substantial increase in the affinity between the RBD and ACE2 in the arbidol-bound RBD/ACE2 complex, suggesting that arbidol generates favorable interactions between them. Based on our MD simulation results, we propose that the binding of arbidol induces structural rigidity in the viral glycoprotein, thus restricting the conformational rearrangements associated with membrane fusion and virus entry. Furthermore, key residues of the RBD and ACE2 that interact with arbidol were identified, opening the door for developing therapeutic strategies and higher-efficacy arbidol derivatives or lead drug candidates.


Subject(s)
Antiviral Agents/metabolism , Antiviral Agents/pharmacology , Indoles/metabolism , Indoles/pharmacology , SARS-CoV-2/drug effects , Angiotensin-Converting Enzyme 2/metabolism , Computer Simulation , Glycoproteins/drug effects , Glycoproteins/metabolism , Humans , Membrane Fusion/drug effects , Models, Molecular , Molecular Conformation , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Domains , COVID-19 Drug Treatment
12.
iScience ; 24(1): 101992, 2021 Jan 22.
Article in English | MEDLINE | ID: covidwho-988121

ABSTRACT

The use of remdesivir to treat COVID-19 will likely continue before clinical trials are completed. Due to the lengthening pandemic and evolving nature of the virus, predicting potential residues prone to mutation is crucial for the management of remdesivir resistance. Using a rational ligand-based interface design complemented with mutational mapping, we generated a total of 100,000 mutations and provided insight into the functional outcomes of mutations in the remdesivir-binding site in nsp12 subunit of RdRp. After designing 46 residues in the remdesivir-binding site of nsp12, the designs retained 97%-98% sequence identity, suggesting that very few mutations in nsp12 are required for SARS-CoV-2 to attain remdesivir resistance. Several mutants displayed decreased binding affinity to remdesivir, suggesting drug resistance. These hotspot residues had a higher probability of undergoing selective mutation and thus conferring remdesivir resistance. Identifying the potential residues prone to mutation improves our understanding of SARS-CoV-2 drug resistance and COVID-19 pathogenesis.

13.
ACS Pharmacol Transl Sci ; 3(5): 1023-1026, 2020 Oct 09.
Article in English | MEDLINE | ID: covidwho-793094

ABSTRACT

SARS-CoV-2 has developed a substantial number of mutations, especially in the S-protein. With the advancement of the pandemic, accumulations of further mutations at the S-protein receptor-binding domain could enhance the infectivity and pathogenicity of the virus. Prediction and evaluation of such mutations are essential for understanding the potential development of more pathogenic strains and for COVID-19 management.

15.
Microb Pathog ; 145: 104236, 2020 Aug.
Article in English | MEDLINE | ID: covidwho-165205

ABSTRACT

Coronavirus disease 2019 (COVID-19) is an emerging infectious disease that was first reported in Wuhan, China, and has subsequently spread worldwide. In the absence of any antiviral or immunomodulatory therapies, the disease is spreading at an alarming rate. A possibility of a resurgence of COVID-19 in places where lockdowns have already worked is also developing. Thus, for controlling COVID-19, vaccines may be a better option than drugs. An mRNA-based anti-COVID-19 candidate vaccine has entered a phase 1 clinical trial. However, its efficacy and potency have to be evaluated and validated. Since vaccines have high failure rates, as an alternative, we are presenting a new, designed multi-peptide subunit-based epitope vaccine against COVID-19. The recombinant vaccine construct comprises an adjuvant, cytotoxic T-lymphocyte (CTL), helper T-lymphocyte (HTL), and B-cell epitopes joined by linkers. The computational data suggest that the vaccine is non-toxic, non-allergenic, thermostable, with the capability to elicit a humoral and cell-mediated immune response. The stabilization of the vaccine construct is validated with molecular dynamics simulation studies. This unique vaccine is made up of 33 highly antigenic epitopes from three proteins that have a prominent role in host-receptor recognition, viral entry, and pathogenicity. We advocate this vaccine must be synthesized and tested urgently as a public health priority.


Subject(s)
Betacoronavirus/immunology , Coronavirus Infections/prevention & control , Nucleocapsid Proteins/immunology , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Spike Glycoprotein, Coronavirus/immunology , Vaccines, Subunit/immunology , Viral Vaccines/immunology , Antigens, Viral/immunology , COVID-19 , Coronavirus Infections/immunology , Epitopes, B-Lymphocyte/immunology , Epitopes, T-Lymphocyte/immunology , Humans , Molecular Dynamics Simulation , Pneumonia, Viral/immunology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL